

CHINA'S LARGEST LEAD-ACID BATTERY EXPORTER ILLEGALLY DUMPS WASTEWATER

Investigative Report on Leoch Battery (Jiangsu) Corp.

Lvse Jiangnan Institute of Public & Environmental Affairs

December 2017

In early November 2017, Lvse Jiangnan received reports from a number of residents living in Jinhu County of Huai'an City that Leoch Battery (Jiangsu) Corp. (hereafter referred to as "Leoch Battery") was using hidden pipes to secretly discharge highly acidic wastewater from its factory site.

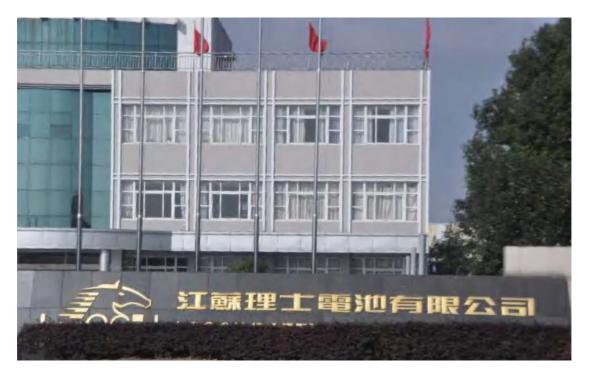


Figure 1. Leoch Battery (Jiangsu) Corp.

Lvse Jiangnan thereafter worked together with the Institute of Public & Environmental Affairs (IPE) to conduct desktop research. The organizations found that the official website of Leoch Battery's parent company states, "Leoch International Technology Limited ('Leoch'), an international new high-tech enterprise listed on the Main Board of the Hong Kong Stock Exchange (stock code: 842), was founded in 1999. We specialize in research and development, manufacturing, sales and marketing of full categories of lead-acid battery. After years of growth, Leoch became one of the leading and is the top exporter of lead-acid battery manufacturer in the People's Republic of China (the 'PRC')"¹ (see figures 2.1 & 2.2).

¹ <u>http://www.leoch.com/en/about.aspx</u>

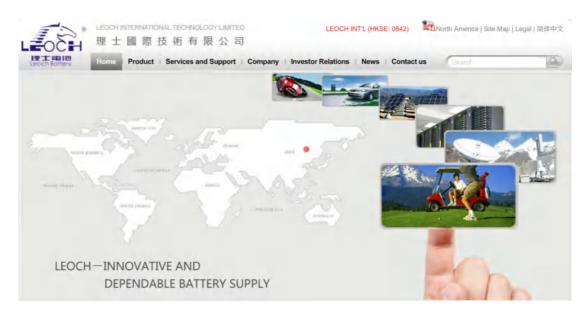


Figure 2.2. Company profile from Leoch Battery's official website³

Searches on the Jiangsu provincial platform of state-monitored pollution sources located the enterprise's self-monitoring plan, which was updated in January 2017. The plan reveals that Leoch Battery primarily works on lead-acid battery manufacturing and used battery recycling, and is a state-monitored enterprise for heavy metals. In addition to conventional pollutants, wastewater discharged by Leoch Battery also contains lead. Pollutants monitored manually and automatically at the discharge outlet including COD, pH and lead.

On March 23, 2016, the Huai'an municipal government released the 2015 Huai'an Key State-Monitored Pollution Sources Monitoring and Supervision Annual Report. According to the

² <u>http://www.leoch.com/en/index.aspx</u>

³ <u>http://www.leoch.com/en/about.aspx</u>

report, in July 2015, the lead concentration in fugitive waste gas discharged by Jiangsu Leoch Science Technology Co., Ltd.⁴ exceeded legal standard by two times⁵ (see figure 3).

No.	Enterprise Name	Category	Pollutant and Multiple of Exceedance	Month
1	Jiangsu Leoch Science Technology Co., Ltd.	Exhaust Gas	Fugitive exhaust gas: lead and its compound (2.0)	July

Chart 6. 2015 List of Key State-Monitored Pollution Sources for Heavy Metals that Exceeded Discharge Standards

Figure 3. 2015 Huai'an Key State-Monitored Pollution Sources Monitoring and Supervision Annual Report

On-site investigation found illegal dumping of highly acidic wastewater containing lead

Based on the findings from desktop research, Lvse Jiangnan carried out several on-site investigations. On November 20, 2017, investigators arrived at the northeast corner of the wall near the wastewater treatment area, led by local residents who had reported the company. They discovered a pipe sticking out from the factory into the outer green belt. Substantial amounts of water with unknown content flowed from the pipe onto the ground, with some water sinking into the soil (figures 4 & 5).

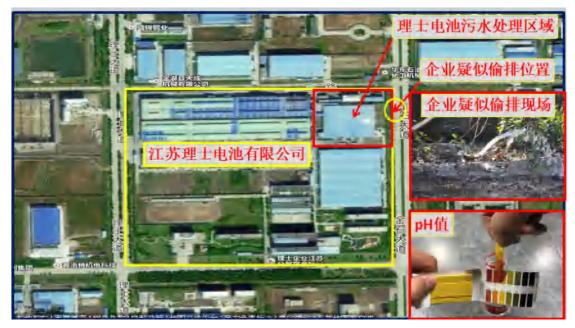


Figure 4. Suspected dumping area of Leoch Battery

⁴ According to the National Enterprise Credit Information Publicity System (<u>http://www.gsxt.gov.cn/index.html</u>), Leoch Battery was formerly called Jiangsu Leoch Science Technology Co., Ltd.

⁵ http://www.huaian.gov.cn/xxgk/hjbh/gkzd/content/5e38cfb9538919480153ab88de1816c8.html

Since the suspected wastewater dumping area was located at Jinshi Road, which was under construction, maintenance workers told investigators that they found the pipe dumping sewage into green belt multiple times, but have no clue what was in the sewage or what harmful impacts it may pose.

Figure 5. Suspected dumping site of Leoch Battery

The wastewater alleged to have been dumped shows a pH level between 2-3 when tested onsite by investigators (figure 6).

Figure 6. Test results of pH level from wastewater allegedly dumped by Leoch Battery

Lvse Jiangnan collected a sample of wastewater suspected to have been dumped and commissioned a qualified third-party testing lab – Bureau Veritas Consumer Products Services (BV) – to examine and analyze the sample.

Test results by BV show that the pH level of the water alleged to have been dumped by Leoch Battery is 2.23 (highly acidic), while lead content of the water measured 8159 μ g/L (figures 7.1 & 7.2).

LAB NO.	:	(6617) 328-0532
DATE	:	November 27,2017
PAGE	:	2 OF 3

SUMMARY OF TEST RESULTS 测试结果的汇总

Test Items 测试项目	Test Requirement 测试依据	Test Result 结论	Remark 备注	
pH	Water quality-Determination of pH value-Glass electrode method 水质 pH 值的测定 玻璃电极法 GB/T 6920-1986	Data 数据	See Result 见测试结果	
Total Lead 总铅	Water quality—Determination of 65 elements—Inductively coupled plasma-mass spectrometry 水质 65 种元素的测定电感耦合等离子体质谱法 HJ700-2014	Data 数据	See Result 见测试结果	

Photo of the Sample 样品照片

Figure 7.1. Water sample sent to BV by Lvse Jiangnan

LAB NO.	:	(6617) 328-053		
DATE	:	November 27,2017		
PAGE	:	3 OF 3		

Sub-Matrix 基质: Waste water 废水	CI	绿色江南微黄液体		
	Sam			
	3			
Items 项目	UNIT MDL 单位 方法检出限		66173820532-01	
pH		0.01	2.23	
Total Lead 总铅	μg/L 0.09		8.15×10 ³	

Figure 7.2. Test results of water sample sent to BV by Lvse Jiangnan

Leoch Battery's self-monitoring plan published on the Jiangsu provincial platform of statemonitored pollution sources shows that Leoch Battery implements the discharge limits of water pollutants for newly constructed enterprises in the *Emission Standard of Pollutants for Battery Industry*, which stipulates 0.5 mg/L (equivalent to 500 μ g/L) as the maximum discharge limit for lead in wastewater, and 6-9 (figure 8) as the maximum discharge limit for pH.

Category	Pollutant monitored	Standard followed	Max. discharge limits	Monitoring methods	Methods sources	Equipment
Wastewater	COD	1	150	Fast digestion spectrophotometric method	НЈ/Т 399	COD digital reactor block/ COD on-line analyzer
	Pb	1	0.5	Flame atomic absorption spectrometry	GB 7475	Atomic absorption spectrophotometer/Pb on-line analyzer
	рН	1	6-9	Glass electrode method	GB 6920	pH meter
	SS	1	140	Gravimetric method	GB 11901	Electronic balance
	Ammonia- nitrogen	1	30	Gas-phase molecular absorption spectrometry	НЈ/Т 195	Spectrometer
	Total phosphorous	1	2.0	Ammonium molybdate spectrophotometric method	GB 11893	spectrophotometer

Figure 8. Leoch Battery's self-monitoring plan, in which "1" represents the Emission Standard of Pollutants for Battery Industry After analyzing the test results of the wastewater alleged to have been dumped, Lvse Jiangnan decided to conduct another on-site investigation. This investigation focused on collecting samples from contaminated soil in order to further understand the impacts of Leoch Battery's illegal dumping behavior on the local ecology and environment.

On November 30, 2017, Lvse Jiangnan commissioned Bureau Veritas staff to collect soil sample 1 from the location where the highly acidic wastewater containing lead was alleged to have been dumped (figure 9).

Figure 9. BV staff locating sampling site

Then Lvse Jiangnan investigator found a concealed hole under the wall a few meters away. Although no water was being discharged through the hole at that time, the soil around the hole had been eroded into a muddy pit. The muddy side of the pit had been washed away to reveal sand. Investigators commissioned BV staff to collect sand sample No. 2 near the pit (see figures 10.1, 10.2, and 11).

Figure 10.1. The hole in the wall

Figure 10.2. The hole in the wall

Figure 11. BV staff locating sampling site

Test results provided by BV (see figure 12) revealed the following: Soil sample No.1: pH=3.66 (highly acidic); lead concentration= 4610 mg/kg Sand sample No. 2: pH=3.91 (highly acidic); lead concentration= 1990 mg/kg

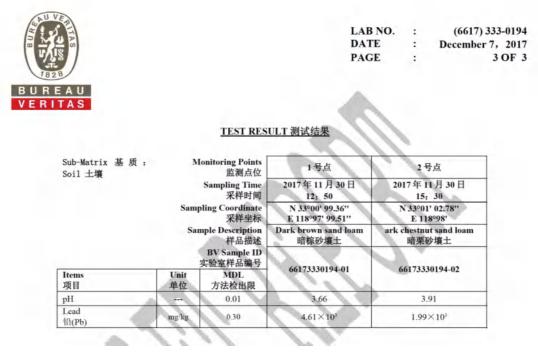


Figure 12. Test results of soil sample No. 1 and samd sample No. 2 sent to BV by Lvse Jiangnan

According to the Environmental Quality Standards for Soil published by China's Ministry of Environmental Protection (MEP), the pH and lead content of soil samples collected near the Leoch Battery factory all exceed standard levels (table 1).

Soil	Standard Classification	рН	Pb≤ (mg/kg)
Environmental			
Quality			
Level I	To protect the natural ecology	Natural	35
	and background of the region.	background	
Level ${ m II}$	To ensure agricultural production	<6.5	250
	and protect human health.	6.5-7.5	300
		>7.5	350
LevelIII	To ensure the production of	>6.5	500
	agroforestry and the normal		
	growth of plants.		

Table 1. Environmental Quality Standards for Soil

Enterprise with alleged dumping behavior supplies to numerous well-known global brands

According to the National Enterprise Credit Information Publicity System,⁶ Leoch Battery was formerly called Jiangsu Leoch Science Technology Co., Ltd. (figure 13). It belongs to Leoch International Technology Limited (hereinafter referred to as Leoch International) and is listed on the Main Board of the Hong Kong Stock Exchange (stock code: 842). Leoch International has grown to become one of the leading lead-acid battery manufacturers in China and is China's top exporter of lead-acid batteries.⁷

Figure 13. Former name of Leoch Battery

According to Leoch's 2016 annual report, its major customers are telecom operators and equipment manufacturers. It was also reported by Economic Daily – China Economic Net on November 23, 2017 that Leoch Battery had built the first in Asia and the world's third automatic production line of pure lead batteries, and had become a major supplier to Huawei, ZTE, China Tower, BMW, Jaguar Landrover, BOSCH and other well-known global brands.⁸

⁶ <u>http://www.gsxt.gov.cn/index.html</u>

⁷ <u>http://www.leochir.com/Company.aspx?id=1</u> (Date of access: 2017/11/27)

⁸ <u>http://www.ce.cn/cysc/zljd/gd/201711/23/t20171123_26972473.shtml</u> (Date of access: 2017/11/27)

Figure 14. Report by Economic Daily – China Economic Net on November 23, 2017

Investigative report submitted to local environmental protection bureaus

Based on the above research, Lvse Jiangnan and IPE co-authored the "Pollution Investigation Report on Jiangsu Leoch Battery" and submitted it by EMS courier on December 11, 2017 to MEP's East China Environmental Protection Inspection Center, the environmental protection bureau (EPB) of Jiangsu province, the "263 special administrative office" in Jiangsu, as well as the environmental protection bureaus of Huai'an and Jinhu cities.

At 2 p.m. on December 15, Lvse Jiangnan received a telephone call from the environmental protection bureau of Jiangsu Province. The provincial department had transferred the research report to the environmental protection bureau of Huai'an, who would be responsible for follow-up.

In addition to sending the report to these environmental protection departments, IPE and Lvse Jiangnan also sent a letter about environmental pollution by EMS courier to Leoch to the mailbox disclosed in Leoch's 2016 annual report, as well as the factory address. The EMS system showed that the letter has been signed by Leoch at 12:48 p.m. on December 15.

Lead is extremely harmful to human health. Once it enters the human body, lead and its compounds may cause damage to the nervous system, hematopoietic system, kidneys, cardiovascular system and endocrine system, and may even cause lead poisoning. We call on the local environmental protection bureau to undertake a follow-up investigation as soon as possible, and for Leoch Battery to issue a public explanation about its suspected illegal dumping of wastewater containing lead that was discovered by Lvse Jiangnan.